MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

SUMMER - 19 EXAMINATION

Subject Name: Computer Graphics
Model Answer

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	$\begin{gathered} \hline \text { Sub } \\ \text { Q. } \\ \text { N. } \\ \hline \end{gathered}$	Answer	Marking Scheme
1		Attempt any FIVE of the following	10 M
	a	Define aspect ratio. Give one example of an aspect ratio	2 M
	Ans	Aspect ratio: It is the ratio of the number of vertical points to the number of horizontal points necessary to produce equal length lines in both directions on the screen. or In computer graphics, the relative horizontal and vertical sizes. For example, if a graphic has an aspect ratio of $2: 1$, it means that the width is twice as large as the height. or Aspect ratio is the ratio between width of an image and the height of an image. Example: The term is also used to describe the dimensions of a display resolution. For example, a resolution of $800 \times 600,1027 \times 768,1600 \times 1200$ has an aspect ratio of $4: 3$. Resolution 1280x1024 has an aspect ratio 5:4 Resolution 2160x1440, 2560x1700 has an aspect ratio 3:2	Definition- 1M Example- 1M
	b	List any four applications of computer graphics.	2 M

Ans	- DTP (Desktop Publishing) - Graphical User Interface (GUI) - Computer-Aided Design - Computer-Aided Learning (Cal) - Animations - Computer Art - Entertainment - Education and training - Image processing - Medical Applications - Presentation and Business Graphics - Simulation and Virtual Reality	Listing of four applications2 M
c	Define virtual reality.List any two advantages of virtual reality.	2 M
Ans	Virtual reality (VR) means experiencing things through our computers that don't really exist. OR Virtual Reality (VR) is the use of computer technology to create a simulated environment. Instead of viewing a screen in front of them, users are immersed and able to interact with 3D worlds. Advantages: - Virtual reality creates a realistic world - Through Virtual Reality user can experiment with an artificial environment. - Virtual Reality make the education more easily and comfort. - It enables user to explore places. - Virtual Reality has made watching more enjoyable than reading. Virtual reality widely used in video games, engineering, entertainment, education, design, films, media, medicine and many more.	Definition1M Any two Advantages1 M
d	List any two line drawing algorithms. Also, list two merits of any line drawing algorithm.	2 M
Ans	Line drawing algorithms:	Listing-1 M

	- Digital Differential Analyzer (DDA) algorithm - Bresenham's algorithm Merits of DDA algorithms: - It is the simplest algorithm and it does not require special skills for implementation. - It is a faster method for calculating pixel positions than the direct use of equation $y=m x+b$. It eliminates the multiplication in the equation by making use of raster characteristics, so that appropriate increments are applied in the x or v direction to find the pixel positions along the line path - Floating point Addition is still needed. Merits of Bresenham's Algorithm: - Bresenhams algorithm is faster than DDA algorithm - Bresenhams algorithm is more efficient and much accurate than DDA algorithm. - Bresenham's line algorithm is a highly efficient incremental method over DDA. - Bresenhams algorithm can draw circles and curves with much more accuracy than DDA algorithm. It produces mathematically accurate results using only integer addition, subtraction, and multiplication by 2 , which can be accomplished by a simple arithmetic shift operation.	Two merits1 M
e	Define convex and concave polygons.	2 M
Ans	Convex Polygon: It is a polygon in which if you take any two positions of polygon then all the points on the line segment joining these two points fall within the polygon itself. Concave Polygon: It is a polygon in which if you take any two positions of polygon then all the points on the line segment joining these two points does not fall entirely within the polygon.	Each 1 M
f	What is homogeneous co-ordinate? Why is it required?	2 M
Ans	Homogeneous coordinates are another way to represent points to simplify the way	Definition-1

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

	```{ d=d+4x+6 } Else { d=d + 4(x-y) + 10 y=y-1 } X=x-1 } While(x<y)```   Step 5: stop   Plotting 8 points, each point in one octant Call Putpixel ( $\mathrm{X}+\mathrm{h}, \mathrm{Y}+\mathrm{k}$ ).   Call Putpixel $(-X+h, Y+k)$.   Call Putpixel ( $\mathrm{X}+\mathrm{h},-\mathrm{Y}+\mathrm{k}$ ).   Call Putpixel ( $-\mathrm{X}+\mathrm{h},-\mathrm{Y}+\mathrm{k}$ ).   Call Putpixel $(\mathrm{Y}+\mathrm{h}, \mathrm{X}+\mathrm{k})$.   Call Putpixel $(-Y+h, X+k)$.   Call Putpixel ( $\mathrm{Y}+\mathrm{h},-\mathrm{X}-\mathrm{k}$ ).   Call Putpixel ( $-\mathrm{Y}+\mathrm{h},-\mathrm{X}+\mathrm{k}$ ).	
c	Translate the polygon with co-ordinates $A(3,6), B(8,11), \& C(11,3)$ by 2 units in $X$ direction and 3 units in $Y$ direction.	4M for proper solution
Ans	$\begin{aligned} & X^{\prime}=x+t x \\ & Y^{\prime}=y+t y \\ & t x=2 \\ & t y=3 \end{aligned}$   for point $\mathrm{A}(3,6)$ $\begin{aligned} & x^{\prime}=3+2=5 \\ & y^{\prime}=6+3=9 \end{aligned}$   for point $\mathrm{B}(8,11)$ $\begin{aligned} & x^{\prime}=8+2=10 \\ & y^{\prime}=11+3=14 \end{aligned}$   for point $\mathrm{C}(11,3)$ $\begin{aligned} & x^{\prime}=11+2=13 \\ & y^{\prime}=3+3=6 \end{aligned}$ $A^{\prime}=\left(x^{\prime}, y^{\prime}\right)=(5,9)$	




| 3) Starburst Method |
| :--- | :--- | :--- |
| 1) STROKE METHOD |
| - Stroke method is based on natural method of text written by human being. In |
| this method graph is drawing in the form of line by line. |
| - Line drawing algorithm DDA follows this method for line drawing. |
| - This method uses small line segments to generate a character. The small |
| series of line segments are drawn like a stroke of pen to form a character. |
| - We can build our own stroke method character generator by calls to the line |
| drawing algorithm. Here it is necessary to decide which line segments are |
| needed for each character and then drawing these segments using line |
| drawing algorithm. |
| 2)BITMAP METHOD |
| - Bitmap method is a called dot-matrix method as the name suggests this |
| method use arrayo of bits for generating a character. These dots are the |
| points for array whose size, is fixed. |
| - In bit matrix method when the dots is stored in the form of array the value 1 |
| in array represent the characters i.e. where the dots appear we represent that |
| position with numerical value 1 and the value where dots are not present is |
| represented by 0 in array. |
| - It is also called dot matrix because in this method characters are represented |
| by an array of dots in the matrix form. It is a two dimensional array having |
| columns and rows. |
| A 5x7 array is commonly used to represent characters. However 7x9 and 9x13 |
| arrays are also used. Higher resolution devices such as inkjet printer or laser |
| printer may use character arrays that are over 100x100. |

3) Starbust method:
In this method a fix pattern of line segments are used to generate characters. Out
of these 24 line segments, segments required to display for particular character are
highlighted. This method of character generation is called starbust method because
of its characteristic appearance
The starbust patterns for characters A and M. the patterns for particular characters
are stored in the form of 24 bit code, each bit representing one line segment. The
bit is set to one to highlight the line segment; otherwise it is set to zero. For
example, 24-bit code for Character A is 0011 0000 0011 1100 1110 0001 and for
character M is 0000 0011 0000 1100 11110011.
This method of character generation has some disadvantages. They are
1. The 24-bits are required to represent a character. Hence more memory is
required.
2. Requires code conversion software to display character from its 24-bit code.
3. Character quality is poor. It is worst for curve shaped characters.

	Character A : 001100000011110011100001   Character M:0000 00110000110011110011	
b	Obtain a transformation matrix for rotating an object about a specified pivot point.	4 M
Ans	To do rotation of an object about any selected arbitrary point P1(x1,y1), following sequence of operations shall be performed.   1. Translate: Translate an object so that arbitrary point P1 is moved to coordinate origin.   2. Rotate: Rotate object about origin.   3. Translate: Translate object so that arbitrary point $P 1$ is moved back to the its original position.   Note: Here to do one operation we are doing the sequence of three operations. So it is called as composite transformation or concatenation.   Rotate about point P1(x1,y1).   1) Translate P1 to origin.   2) Rotate   3) Translate back to P1.   Equation for this composite transformation matrix form is as follows: $\begin{aligned} P^{\prime} & =T\left(x_{1}, y_{1}\right) \cdot R(\theta) \cdot T\left(-x_{1},-y_{1}\right) \\ P^{\prime} & =\left[\begin{array}{ccc} 1 & 0 & x_{1} \\ 0 & 1 & y_{1} \\ 0 & 0 & 1 \end{array}\right] \cdot\left[\begin{array}{ccc} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{array}\right] \cdot\left[\begin{array}{ccc} 1 & 0 & -x_{1} \\ 0 & 1 & -y_{1} \\ 0 & 0 & 1 \end{array}\right] \cdot\left[\begin{array}{l} x \\ y \\ 1 \end{array}\right] \end{aligned}$   Here ( $\mathrm{x} 1, \mathrm{y} 1$ ) are coordinates of point P 1 and hence are translation factors tx and ty; we want to move P1 to origin, x 1 and y 1 are x and y distances to P1and hence it is translation factor.	$\begin{gathered} \text { Proper } \\ \text { Explanation } \\ 4 \mathrm{M} \end{gathered}$


around the clipping boundary or plane.

- This results in four possible relationships between the edge and clipping plane.

1. If first vertex of polygon edge is outside and second is inside window boundary, then intersection point of polygon edge with window boundary and second vertex are added to output vertices set as shown in Fig. 6.13.

2. If both vertices of edge are inside window boundary, then add only second vertex to output set as shown in Fig. 6.14.

3. If first vertex of edge is inside and second is outside of window boundary then point of intersection of edge with window boundary is stored in output set as shown in Fig. 6.15.

4. If both vertices of edges are outside of window boundary then those vertices are rejected as shown in Fig. 6.16.


- Going through above four cases we can realize that there are two key processes in this algorithm:

1. Determine the visibility of point or vertex (Inside - Outside Test)
2. Determine the intersection of the polygon edge and clipping plane.

- The second key process in Sutherland-Hodgeman polygon clipping algorithm is to determine the intersection of the polygon edge and clipping plane.

	- Assume that we're clipping a polygon's edge with vertices at $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and ( $\mathrm{x}_{2}$, $\mathrm{y}_{2}$ ) against a clip window with vertices at ( $\mathrm{x}_{\min }, \mathrm{y}_{\text {min }}$ ) and ( $\mathrm{x}_{\max }, \mathrm{y}_{\max }$ ).   1. The location $\left(\mathrm{I}_{\mathrm{X}}, \mathrm{I}_{\mathrm{Y}}\right)$ of the intersection of the edge with the left side of the window is:   (i) $\mathrm{I}_{\mathrm{X}}=\mathrm{x}_{\text {min }}$   (ii) $I_{Y}=$ slope $^{*}\left(x_{\min }-x_{1}\right)+y_{1}$, where the slope $=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)$.   2. The location of the intersection of the edge with the right side of the window is:   (i) $\mathrm{I}_{\mathrm{X}}=\mathrm{x}_{\text {max }}$   (ii) $I_{Y}=\operatorname{slope}^{*}\left(x_{\text {max }}-x_{1}\right)+y_{1}$, where the slope $=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)$   3. The intersection of the polygon's edge with the top side of the window is:   (i) $\mathrm{I}_{\mathrm{X}}=\mathrm{x}_{1}+\left(\mathrm{y}_{\max }-\mathrm{y}_{1}\right) /$ slope   (ii) $\mathrm{I}_{\mathrm{Y}}=\mathrm{y}_{\text {max }}$   4. Finally, the intersection of the edge with the bottom side of the window is:   (i) $\mathrm{I}_{\mathrm{X}}=\mathrm{x}_{1}+\left(\mathrm{y}_{\text {min }}-\mathrm{y}_{1}\right) /$ slope   (ii) $I_{Y}=y_{\text {min }}$   Algorithm for Sutherland-Hodgeman Polygon Clipping:   Step 1: Read co-ordinates of all vertices of the polygon.   Step 2: Read co-ordinates of the clipping window.   Step 3: Consider the left edge of window.   Step 4: Compare vertices of each of polygon, individually with the clipping plane.   Step 5: Save the resulting intersections and vertices in the new list of vertices according to four possible relationships between the edge and the clipping boundary.   Step 6: Repeat the steps 4 and 5 for remaining edges of clipping window. Each time resultant list of vertices is successively passed to process next edge of clipping window.   Step 7: Stop.	
d	Given the vertices of Bezier Polygon as $P_{0}(1,1), P_{1}(2,3), P_{2}(4,3), P_{3}(3,1)$, determine five points on Bezier Curve.	4 M

## MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION



## MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION



Page 15| 28
OUR CENTERS :

Contact - 9136008228


b	Consider the line from $(0,0)$ to $(4,6)$. Use the simple DDA algorithm to rasterize this line.					4 M
Ans	Evaluating steps 1 to 5 in the DDA algorithm we have, $\begin{aligned} & X_{1}=0, Y_{1}=0 \\ & X_{2}=4, Y_{2}=6 \end{aligned}$ $\begin{aligned} & \text { Length }=\left\|Y_{2}-Y_{1}\right\|=6 \\ & \Delta X=\left\|X_{2}-X_{1}\right\| / \text { Length }=4 / 6 \\ & \Delta Y=\left\|Y_{2}-Y_{1}\right\| / \text { Length }=6 / 6=1 \end{aligned}$   Initial value for, $\begin{aligned} & \mathrm{X}=0+0.5 \times(4 / 6)=0.5 \\ & Y=0+0.5 \times(1)=0.5 \end{aligned}$   Plot integer now:   1. $\operatorname{Plot}(0,0), x=x+\Delta X=0.5+4 / 6=1.167, \quad y=y+\Delta Y=0.5+1=1.5$   2. $\operatorname{Plot}(1,1), \quad x=x+\Delta X=1.167+4 / 6=1.833 \quad y=y+\Delta Y=1.5+1=2.5$   3.Plot $(1,2), \quad x=x+\Delta X=1.833+4 / 6=2.5 \quad y=y+\Delta Y=2.5+1=3.5$   4.Plot $(2,3), \quad x=x+\Delta X=2.5+4 / 6=3.167 \quad y=y+\Delta Y=3.5+1=4.5$   5.Plot $(3,4), \quad x=x+\Delta X=3.167+4 / 6=3.833 \quad y=y+\Delta Y=4.5+1=5.5$   6.Plot $(3,5), \quad x=x+\Delta X=3.833+4 / 6=4.5 \quad y=y+\Delta Y=5.5+1=6.5$   Tabulating the results of each iteration in the step 7 we get,					Proper result 4 M

(Autonomous)
(ISO/IEC - 27001-2013 Certified)


	First we rotate square by $45^{\circ}$ anticieclewise direction and followed by reflection ahoul-$x$-axis $R \cdot x_{\text {ref }}=\left[\begin{array}{ccc} 1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\ -1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\ 0 & 0 & 1 \end{array}\right]\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array}\right]$ $=\left[\begin{array}{ccc} 1 \mid \sqrt{2} & -1 / \sqrt{2} & 0 \\ -1 / \sqrt{2} & -1 / \sqrt{2} & 0 \\ 0 & 0 & 1 \end{array}\right]$ $\left[\begin{array}{l} A^{\prime} \\ B^{\prime} \\ c^{\prime} \\ D^{\prime} \end{array}\right]=\left[\begin{array}{lll} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right]\left[\begin{array}{ccc} 1 / \sqrt{2} & -1 / \sqrt{2} & 0 \\ -1 / \sqrt{2} & \sqrt{2} & 0 \\ 0 & 0 & 1 \end{array}\right]$   $\left[\begin{array}{ccc}1 / \sqrt{2} & -1 / \sqrt{2} & 1 \\ 0 & & 1 \\ -1 / \sqrt{2} & -1 \sqrt{2} & 1 \\ 0 & & 1\end{array}\right]$ $D^{\prime}=(0,-2 \mid \sqrt{2})$	
d	Use Cohen-Sutherland outcode algorithm to clip line PI (40, 15) -- P2 (75. $45)$ against a window $A(50,10), B(80,10) . C(80,40) \& D(50,40)$.	4 M
Ans		$\begin{gathered} \text { Proper } \\ \text { result } 4 \mathrm{M} \end{gathered}$



## MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

		Lagrangian Interpolation Method:   Suppose we want a polynomial curve that will pass through n sample points -   $\left.\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right), \ldots,\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}, \mathrm{z}_{\mathrm{n}}\right)$, the function can be constructed as the sum of terms, one term for each sample point.   a. Blending Function : $\begin{aligned} & f x(u)=\sum_{i=1}^{n} x_{i} B_{i}(u) \\ & f y(u)=\sum_{i=1}^{n} y_{i} B_{i}(u) \\ & f z(u)=\sum_{i=1}^{n} z_{i} B_{i}(u) \end{aligned}$   The function $B_{i}(u)$ is called as a blending function. For each value of $u$, the blending function determines which $\mathrm{i}^{\text {th }}$ sample point affects the position of the curve.   The function $\mathrm{B}_{\mathrm{i}}(\mathrm{u})$ tells how hard the $\mathrm{i}^{\text {th }}$ sample point is pulling it for some value of $u, B_{i}(u)=1$ and for each $j \neq i, B_{j}(u)=0$, then $i^{\text {th }}$ sample point has complete control of the curve. The curve will pass through ith sample point. Create a blending function for which the sample points ( $\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}$ ) has complete control when $u=-1$, the third when $u=1$ and so on. Therefore, we require a blending function. $\mathrm{B}_{1}(\mathrm{u})=1 \text { at } \mathrm{u}=-1$ $\text { and } \quad B_{1}(u)=0 \text { at } u=0,1,2,3, \ldots, n-2$ $\begin{aligned} & \text { An expression is } 0 \text { at } u(u-1)(u-2) \\ & \text { At } u=-1 \text {, it is }(-1)(-2)(-3) \ldots(1-n) \end{aligned}$   So dividing by above constant, it gives 1 at $\mathrm{t}=1$ $\begin{aligned} & \text { nerefore } \\ & \mathrm{B}_{1}(\mathrm{u})=\frac{\mathrm{u}(\mathrm{u}-1)(\mathrm{u}-2) \ldots[(\mathrm{u}-(\mathrm{n}-2)]}{(-1)(-2)(-3) \ldots(1-n)} \end{aligned}$   Therefore   The $i^{\text {th }}$ blending function can be constructed in the same way to be 1 at $u=i$ -2 and 0 at other integers $\therefore B_{1}(u)=\frac{(u+1)(u)(u, 1) \ldots[u-(i-3)][u-(i-1)] \ldots[u-(i-2)]}{(i-1)(i-2)(i-3) \ldots(1)(-1) \ldots(i-n)}$   The curve which is approximated using above equation is called Lagrange Interpolation.	
5		Attempt any TWO of the following :	12 M
	a	Consider the line from $(5,5)$ to $(13,9)$. Use the Bresenham's algorithm to rasterize the line.	6 M
	Ans	Bresenham Line Drawing Calculator By putting x1,x2 and y1,y2 Value it Show The Result In Step By Step order, and Result Brief Calculation Which Is Calculated by Bresenham Line Drawing Algorithm. Bresenham Line Drawing Algorithm display result in tables. Starting Points is $\mathrm{x} 1, \mathrm{y} 1$ and Ending points is $\mathrm{x} 2, \mathrm{y} 2$.   Preliminary Calculations: $\begin{aligned} & \qquad \mathrm{x} 1=5\|\mathrm{y} 1=5\| \&\|\mathrm{x} 2=13\| \mathrm{y} 2=9 \\ & \text { Calculation } \quad \text { Result } \end{aligned}$	Remark: Preliminary Calculations 2 M; Step wise plot 4 M

DEGREE \& DIPLOMA
MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION



ii) Here $\mathrm{Sh}_{\mathrm{y}}=0.5$ and $\mathrm{x}_{\text {ref }}=-1$

$$
\left[\begin{array}{l}
A^{\wedge} \\
B^{`} \\
C^{`} \\
D^{`}
\end{array}\right]=\left[\begin{array}{l}
A \\
B \\
C \\
D
\end{array}\right] *\left[\begin{array}{lcl}
1 & \text { Shy } & 0 \\
0 & 1 & 0 \\
0 & - \text { Shy } * \text { xref } & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right] *\left[\begin{array}{ccc}
1 & 0.5 & 0 \\
0 & 1 & 0 \\
0 & 0.5 & 1
\end{array}\right]
$$

## Shearing Transformation Result:-



	$\mathbf{c}$	Write a program in ' $\mathbf{C}$ ' to generate Hilbert's curve.
	Ans	Correct logic - 6 Marks)



		delay(10000); closegraph ()$;$ return 0;		
6		Attempt any TWO of the following	12 M	
	a	Write a Program in ' $\mathbf{C}^{\prime}$ ' for DDA Circle drawing algorithm	6 M	
	Ans	```#include<stdio.h> #include<conio.h> #include<graphics.h> #include<math.h> void main() { int gdriver=DETECT,gmode,errorcode,tmp,i=1,rds; float st_x,st_y,x 1,x2,y1,y2,ep; initgraph(&gdriver,&gmode,"C:\\TC\\BGI"); printf("Enter Radius:"); scanf("%d",&rds); while(rds>pow(2,i)) i++; ep=1/pow(2,i); x1=rds; y1=0; st_x=rds; st_y=0; do { x2=x1+(y1*ep); y2=y1-(x2*ep); putpixel(x2+200,y2+200,10); x1=x2; y1=y2; }while((y1-st_y)<ep \|	(st_x-x1)>ep); getch(); }```	Correct Program 6 marks
	b	Perform a $45^{\circ}$ rotation of triangle $\mathrm{A}(0,0), \mathrm{B}(1,1), \mathrm{C}(5,2)$   (i) About the origin   (ii) About $\mathbf{P}(-1,-1)$	6 M	
	Ans	About the Origin: -	$\begin{gathered} \text { Each Sub } \\ \text { problem - } 3 \\ \text { M } \end{gathered}$	

## MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

	Solution: We can represent the given triangle, in matrix form, using homogeneous coordinates of the vertices:   The matrix of rotation is: $\mathrm{R}_{\theta}=\mathrm{R}_{45}{ }^{0}=\left[\begin{array}{lll}\cos 45^{\circ} & \sin 45^{0} & 0 \\ -\sin 45^{0} & \cos 45^{0} & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}\sqrt{ } 2 / 2 & \sqrt{ } 2 / 2 & 0 \\ -\sqrt{2} / 2 & \sqrt{2} / 2 & 0 \\ 0 & 0 & 1\end{array}\right]$   So the new coordinates $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ of the rotated triangle ABC can be found as: $\left[A^{\prime} B^{\prime} C^{\prime}\right]=[A B C] \cdot R_{45^{\circ}}=\left[\begin{array}{lll} 0 & 0 & 1 \\ 1 & 1 & 1 \\ 5 & 2 & 1 \end{array}\right]\left[\begin{array}{ccc} \sqrt{2} / 2 & \sqrt{2} / 2 & 0 \\ -\sqrt{2} / 2 & \sqrt{2 / 2} & 0 \\ 0 & 0 & 1 \end{array}\right]=\left[\begin{array}{ccc} 0 & 0 & 1 \\ 0 & \sqrt{2} & 1 \\ 3 \sqrt{2} / 2 & 7 \sqrt{2} / 2 & 1 \end{array}\right]$   Thus $A^{\prime}=(0,0), B^{\prime}=(0, \sqrt{ } 2), C^{\prime}=(3 \sqrt{ } 2 / 2,7 \sqrt{ } 2 / 2)$	
c	Apply the Liang-Barsky algorithm to the line with co-ordinate (30,60) \& $(60,25)$ against the window:   $(\mathbf{X m i n}, Y \min )=(\mathbf{1 0 . 1 0}) \&(X \max , Y \max )=(\mathbf{5 0 , 5 0})$	6 M


Ans	Given: $\begin{aligned} & \left(X_{\min }, Y_{\min }\right)=(10,10) \text { and }\left(X_{\max }, Y_{\max }\right)=(50,50) \\ & P 1(30,60) \text { and } P 2=(60,25) \end{aligned}$   Solution:   Set Umin $=0$ and Umax $=1$ $\begin{aligned} & \text { ULeft= q1 } / \mathrm{p} 1 \\ & =\mathrm{X} 1-\mathrm{Xmin} /-\Delta \mathrm{X} \\ & =30-10 /-(60-30) \\ & =20 /-30 \\ & =-0.67 \end{aligned}$   URight $=$ q2 / p2   $=\mathrm{Xmax}-\mathrm{X} 1 / \Delta \mathrm{X}$   $=50-30 /(60-30)$ $=20 / 30$ $=0.67$   UBottom $=$ q3 / p3   $=\mathrm{Y} 1-\mathrm{Y} \min /-\Delta \mathrm{Y}$ $=60-10 /-(25-60)$ $=50 / 35$ $=1.43$   UTop $=$ q4 / p4   $=\mathrm{Y} \max -\mathrm{Y} 1 / \Delta \mathrm{Y}$ $=50-60 /(25-60)$ $=-10 /-35$ $=0.29$   Since ULeft $=-0.57$ which is less than Umin. Therefore we ignore it.   Similarly UBottom $=1.43$ which is greater than Umax. So we ignore it. URight=Umin $=0.67$ (Entering)   UTop=Umax $=0.29$ (Exiting)   We have UTop= 0.29 and URight $=0.67$ $\mathrm{Q}-\mathrm{P}=(\Delta \mathrm{X}, \Delta \mathrm{Y})=(30,-35)$   Since Umin>Umax, there is no line segment to draw.	Remark: Calculation of each side 1 M ; Decision of displaying line coordinates with justification 2 M

